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Abstract—The development of Digital Twins (DTs) has
bloomed significantly in last years and related use cases are
now pervading several application domains. DTs are built upon
Internet of Things (IoT) and Industrial IoT platforms and
critically rely on the availability of reliable sensor data. To this
aim, in this article, we propose a sensor fault detection, isolation
and accommodation (SFDIA) architecture based on machine-
learning methodologies. Specifically, our architecture exploits
the available spatio-temporal correlation in the sensory data
in order to detect, isolate and accommodate faulty data via a
bank of estimators, a bank of predictors and one classifier, all
implemented via multi-layer perceptrons (MLPs). Faulty data are
detected and isolated using the classifier, while isolated sensors
are accommodated using the estimators. Performance evaluation
confirms the effectiveness of the proposed SFDIA architecture to
detect, isolate and accommodate faulty data injected into a (real)
wireless sensor network (WSN) dataset.

Index Terms—Digital Twin (DT), Industry 4.0, fault tolerance,
Internet of Things (IoT), neural networks, sensor validation.

I. INTRODUCTION

The adoption of digital twins (DTs) built upon the Inter-
net of Things (IoT) for industrial environments have grown
significantly with the recent wave of digitalization. DTs are
virtual representations of physical assets, which utilize the
equipped sensors’ data to elaborate and deliver real-time
insights, predictions and improved decisions.

However, due to harsh environment [1], hardware limita-
tion [2] and/or malicious attacks [3], [4], the data collected
by sensors within the system can be faulty. The occurrence of
sensor faults during normal system operation is inevitable and
might lead to system-performance degradation and, in worst
case when dealing with safety-critical systems, loss of lives.
Therefore, sensor fault detection, isolation and accommodation
(SFDIA) is an extremely important feature to implement in
DTs in order to ensure system reliability and safety.

The current research trend mainly focuses on analytical
redundancy, i.e. exploiting correlations within the system [5]
to avoid the deployment of additional sensing hardware. A
model-based SFDIA method was developed according to
electrical dynamics equations for current sensors of grid side
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converters [6], where detection and isolation tasks were based
on residual generations and linear state observer logic, while
accommodation task was achieved by employing physical re-
dundancy for the single-fault scenario. Analogously, a sensor-
fault control strategy comprising of two sliding-mode ob-
servers and Luenberger observer was adopted for synchronous
motor drives and resulted in high computational complex-
ity [7]. Other model-based approaches have been developed
with use of Kalman filters [8], [9], Bayesian methods [10]
and observer-based methods [11]. Still, in general, it is seldom
practical to develop an accurate model of a system due to the
inherent complexity and variety of DTs’ applications.

On the contrary, data-driven approaches (e.g. support vector
machine [12], principal component analysis [13] and neural
networks (NNs) [5]) are able to overcome this problem as they
mostly rely on historical data. A multi-layer perceptron (MLP)
NN, a class of feed-forward NNs, is employed by a modular
SFDIA (M-SFDIA) method to diagnose faults in DTs [5], [14],
while a fully-connected cascade NN is exploited in [15] to
reduce the computational complexity. Also, alternative solu-
tions are developed via hybrid approaches, e.g. using banks of
NNs and adaptive linear networks, to reduce the computational
complexity [16]. Finally, an unsupervised method uses an
autoencoder (AE) NN as a classifier to detect faults and a
denoising AE to clean the faulty data [4]. However, AE-based
method is unable to perform the identification/isolation task
within the SFDIA scheme.

In this article, the major motivation is to propose a machine-
learning-based SFDIA architecture to exploit spatial and tem-
poral correlations in the data collected from the sensors.
To this end, two banks of MLP NNs are employed to
perform estimation and prediction of sensors measurements
in the system. Moreover, an MLP-based classifier is trained
to classify faulty sensors based on dissimilarities between
obtained predictions/estimates and actual sensors’ readings.
The proposed approach differs from our previous work (M-
SFDIA [5]) in that we here introduce a bank of MLP NN
predictors to better exploit the temporal correlations within
each sensor in the proposed architecture. On contrary to AE-
based architecture, the proposed architecture performs all three
tasks (detection, isolation, and accommodation) by exploiting
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Figure 1: Block diagram of the proposed SFDIA architecture.

MLP modules. Moreover, the proposed architecture works on
a real-time basis capable to detect faults online (promptly) as
they occur. The considered SFDIA architecture is evaluated
through synthetically-generated weak bias faults which were
added to a real-world wireless sensor network (WSN) dataset
with four sensors measuring temperature and humidity [17].
Numerical results illustrate the superiority of the proposed
architecture compared to the M-SFDIA architecture.

The rest of this article is organized as follows. The proposed
SFDIA architecture is explained in Sec. II. Sec. III presents
the NNs’ configuration and the dataset description. Simulation
results and performance comparison are reported in Sec. IV.
Finally, Sec. V ends the paper and provides direction for
further study.

Notation - Lower-case bold letters indicate vectors, exp(·) is
the exponential function and (·)T denotes transpose operator.
U(a, b) (resp. Ud(a, b)) denotes a uniform (resp. discrete-
uniform) probability density function (PDF) with support
(a, b) (resp. {a, a + 1, . . . , b}), whereas B(p) denotes a
Bernoulli PDF with activation probability p.

II. SFDIA

The main idea of the proposed architecture is to exploit
temporal and spatial correlations among sensors in the system.
The block diagram of the proposed architecture is depicted
in Fig. 1. The proposed method is based on four functional
blocks: (a bank of) estimators (B1), (a bank of) predictors
(B2), a residual calculator (B3) and a classifier (B4). Each
block is described in what follows.

A. Estimators (B1) and Predictors (B2)

The two banks of estimators and predictors aim at modeling
sensors within the system. According to Fig. 1, both these
banks are equipped with K independent estimators and pre-
dictors, respectively. Herein, K denotes the number of faulty
sensors. Each estimator module provides an estimation x̂s[n]
of the measurement of its corresponding sensor s at current
time step n. Each sensor estimator receives x(s) as input,
i.e. the vector of all existing sensor readings except the one
from the sensor under estimation s using a sliding window

mechanism (from Le previous time steps up to the current
time step n).

Since each estimator module is not utilizing its correspond-
ing sensor readings, predictor modules are there to play a
complementary role. Specifically, each of the K predictors
produces a prediction x̃s[n] of its corresponding sensor s at
current time step n by receiving the readings xs as input, i.e.
readings from its corresponding (under prediction) sensor s
using a sliding window mechanism (from Lp previous time
steps up to time step n− 1).

B. Residual Calculator (B3)

This block calculates the residual signals of estimation and
prediction (namely ee,s[n] and ep,s[n]) for each faulty sensor
s = 1, . . . ,K as the squared difference of sensors readings
and their respective estimation and prediction values i.e.

ee,s[n] = (xs[n]− x̂s[n])2, (1)

ep,s[n] = (xs[n]− x̃s[n])2. (2)

Residual signals capture the dissimilarity and incongruity
between sensors readings vs. estimated and predicted values.
Residual calculator plays a data pre-processing role for the
classifier block by providing interpretable and parsed input.

C. Sensor-Fault Classifier (B4)

In the classifier block, a single MLP classifier is exerted
to detect and identify faulty sensors in a real-time manner.
Denoting e[n] = (ee,1[n], . . . , ee,K [n], ep,1[n], . . . , ep,K [n])T

the residual vector containing the residual signals of all K
sensors at time step n, the input of the classifier is the
collection of residual vectors from Lc previous time steps up
to current time step n, namely e[n], . . . , e[n − Lc]. A (soft-
)decision vector d[n] = (d1[n], d2[n], . . . , dK [n])T represents
the classifier output, where di[n] ∈ [0, 1], i = 1, . . . ,K
indicates the pseudo-probability (viz. confidence) for the i-th
sensor being faulty. Specifically, a decision element {di(n) =
0} indicates the highest confidence on sensor i being fault-
free, whereas a decision element {di(n) = 1} corresponds
to the highest confidence on the faulty behaviour for the
considered sensor. As a consequence, a vector d[n] with all
elements set to 0 indicates healthy operation of all sensors
within the system. Consequently, herein a faulty sensor is
detected and identified/isolated when the entries of the deci-
sion vector d[n] exceed a predefined threshold γ. Specifically,
maxKi=1 di[n] ≷ γ is used for detection, whereas (upon
detection) k̂ = argmaxKi=1 di[n] is used for identification.

Ultimately, isolated faulty sensors are accommodated with
the corresponding estimates from the estimators block to
preserve system performance. Although the proposed SFDIA
architecture can diagnose simultaneous faults of multiple sen-
sor (by a slight modification of the identification logic), this
issue is left to future work.
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Figure 2: The generic structure of MLP.

III. MLP NNS AND DATASET SETUP

A. MLP NNs Setup

MLPs are feed-forward NNs capable to learn a function
h(·) : Rl → Rm by means of a set of known labeled
training samples, where l is the input dimension and m is
the output dimension, which are broadly used for regression
and classification tasks [18]. As shown in Fig. 2, MLPs are
made of an input layer, one or more hidden layers and one
output layer. Each neuron at the generic hidden/output layer
executes a biased weighted sum of its inputs and processes
the obtained value with an activation function to produce the
output value. MLP NNs with appropriate number of hidden
layers and number of neurons per hidden layer can model
functions of arbitrary complexity with sufficient accuracy.
In the following, we provide details about each MLP NN
configuration employed in the proposed architecture.

1) Estimators and Predictors: The considered MLP-based
estimators are made of (Le+1)(K−1) input nodes, one single
hidden layer with Nv hidden neurons, and one single output
node. MLP-based predictors are made of Lp input nodes and a
similar structure as the MLP-based estimators. Moreover, the
hyperbolic tangent (Tanh) function is used as the activation
function f(·) of the hidden layers, i.e.

f(z) = [exp(z)− exp(−z)] / [exp(z) + exp(−z)] , (3)

where z is the biased weighed sum of inputs to a neuron.
Differently, a linear activation function is used for the output
layer in all MLP-based estimators and predictors. Training
is done using the Nesterov-accelerated adaptive moment es-
timation (Nadam) [19] optimization algorithm with the mean
square error (MSE) loss function.

2) Classifier: The MLP-based classifier is made of
2K(Lc + 1) input nodes, two hidden layers with Nc hidden
neurons per hidden layer, and K output nodes. The Tanh
activation function is used for the hidden layers, and a logistic
(sigmoid) activation function g(·) is used for each neuron of
the output layer, i.e.

g(z) = 1 / [1 + exp(−z)] , (4)

Table I: Architecture Parameters

Parameter Estimator Predictor Classifier

No. of input nodes 33 10 88

No. of hidden layers 1 1 2

No. of nodes per hidden layer 10 10 15

No. of output nodes 1 1 4

Hidden layers activation Tanh Tanh Tanh
Output activation Linear Linear Sigmoid

Optimization algorithm Nadam Nadam Nadam
Loss function MSE MSE BCE

The Nadam optimization algorithm is employed for training
the classifier based on a loss capitalizing multitask learning.
Indeed, given the multitask nature of the employed archi-
tectures, the loss function to be minimized depends on the
specific parameters of the K binary fault-classification tasks.
Accordingly, we aim to minimize a weighted sum of the losses
of the K classification tasks considered, namely:

L (·) ,
K∑

k=1

λk Lk(·) (5)

with the usual binary cross-entropy (BCE) loss function used
for all the K binary tasks L1(·), . . . ,LK(·). Since our classi-
fier is in charge of solving multiple learning tasks at once, the
weight λk represents the preference level of the kth task in the
multitask objective function to be optimized. For simplicity, in
this work, we use (simply) uniform weighting, i.e. λk = 1/K
for k = 1, . . . ,K.

B. WSN Dataset

The proposed method is evaluated using a real-world
publicly-available WSN dataset generated at the University of
North Carolina [17]. More specifically, we considered four
sensors (K = 4): two indoor and two outdoor sensor nodes.
Each sensor is twofold and measures both humidity and tem-
perature for the time duration of six hours. Also, the original
dataset includes some anomalies which we have discarded
in our study in order to superimpose synthetically-generated
faults and perform a statistical analysis. Only temperature
measurements are considered in this study.

IV. NUMERICAL RESULTS

In this section, numerical performance on the WSN dataset
of the proposed SFDIA architecture are presented and com-
pared with those of the M-SFDIA proposed in our previous
work [5]. Our analysis is carried out by dividing the dataset
into a training set accounting for 85% of the samples and a
test set made of the remaining 15%. Also, 15% of the training
set is held out for validation purposes to avoid over-fitting
of the MLP NNs. Samples of each sensor in the dataset are
normalized to the range [0, 1] using min-max scaling, i.e.

x′s = (xs − xmin) / (xmax − xmin), (6)
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Figure 3: Weighted BCE loss of the classifier (cf. Eq. (5)) for
training and validation sets during the training phase.

where xmax and xmin are the minimum and maximum read-
ings in the training set for a given sensor s and x′s represents
the normalized reading of the sensor s.

Synthetic bias faults are generated and added to the WSN
dataset in order to validate the proposed architecture perfor-
mance. In order to avoid NNs from learning specific bias levels
and/or duration of the generated faults, the modulus (resp. the
sign) of the bias level has been generated as |b| ∼ U(0.2, 0.4)
(resp. sign(b) ∼ B(0.5)). Finally, the bias duration has been
generated as M ∼ Ud(3, 7). Then, a bias b is injected to the
normal operation data-sets for M consecutive samples as

x′s,b[n] =

{
x′s[n] + b , 0 ≤ n−m < M

x′s[n] , otherwise
(7)

where x′s,b[n] is reading of sensor s with possible bias faults
and m denotes the starting time instant of the fault. The
performance analysis of the proposed architecture on different
fault typologies (e.g. drift faults) is left to future work.

We considered Nv = 10 nodes per hidden layer and sliding
windows with size Le = Lp = 10 for all the estimators and
the predictors within the architecture, while the classifier was
implemented with Nc = 15 nodes per hidden layer and a
sliding window with size Lc = 10. The parameters of the
proposed architecture are summarized in Tab. I. For a fair
comparison, the same parameters have been chosen for the
M-SFDIA architecture [5].

Fig. 3 shows the trend of the weighted BCE loss for both
training and validation sets during the training phase of the
MLP-based classifier. Apparently, the validation loss settles
after ≈ 160 epochs (as highlighted in the plot), while the
training loss keeps decreasing for successive epochs. Early-
stopping mechanism [20] was used to stop the training phase
at this point and avoid over-fitting. Trends for the MSE loss on
training/validation sets during the training phase of the MLP-
based estimators and predictors resemble those shown for the
classifier and are omitted for brevity.

First, in Fig. 4 the temporal behavior of the fault detection
process is visualized over a portion of the test set. The
proposed architecture provides better detection performance
compared to the M-SFDIA due to a complete exploitation of
the spatio-temporal correlation within the sensor data. Indeed,
it is apparent how the M-SFDIA architecture exhibits missed
detection of several faults for a given probability of false
alarm, while the proposed architecture performs much better.

Fig. 5 illustrates detection and classification (i.e. detection
plus isolation) performance by means of the corresponding
ROC curves.1 More specifically, the results show a clear per-
formance improvement achieved by the proposed architecture
w.r.t. the M-SFDIA architecture for both (i) detection and
(ii) classification tasks. Regarding the former, the probability
of detection for the M-SFDIA (resp. proposed) architecture
approaches a value of ≈ 0.93 (≈ 0.98). The above results are
obtained by setting the false-alarm probability to Pf = 10−2.
Conversely, regarding the classification task (under the same
false-alarm constraint), the M-SFDIA (resp. the proposed)
architecture achieves a probability of correct classification
close to 0.90 (resp. 0.98). The above results highlight ideal
identification performance for our approach, i.e. no additional
errors caused by identifying the correct source of fault.

Fig. 6 focuses on a snapshots for visual comparison of
the accommodated output of both architectures for probability
of false alarm of Pf = 10−2 together with healthy and
faulty measurements. Again, the proposed method success-
fully accommodates more faulty data, and presents greater
accommodation performance. As a wrap-up, the PDFs of the
error signals (i.e. the difference between the accommodated
signals and the healthy signals) over the test set are shown in
Fig. 7, for Pf = 10−1 (top) and Pf = 10−2 (bottom). Though
both architectures use the same estimation outputs obtained
by the MLP-based estimators to accommodate the detected
faulty measurements, the proposed architecture provides better
final accommodation performance. This is generally due to the
higher detection and correct classification rates, which reflect
into a larger number of faulty measurements replaced with
corresponding reliable estimates.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced SFDIA architecture based on
machine-learning methods to empower design of DTs. We
compared the performance of our novel architecture with
a state-of-the-art M-SFDIA architecture using a real-world
publicly-available WSN dataset. Unlike the M-SFDIA archi-
tecture, the proposed architecture utilizes the entire spatio-
temporal correlations by introducing a block of MLP-based

1Receiver operating characteristics (ROC) curves show the trade-off be-
tween the probability of detection (resp. probability of correct classification)
and the probability of false alarm by varying γ, when assessing detection
(resp. identification) performance. In detail, the probability of detection refers
to the proportion of faulty samples that are correctly detected (i.e. true-
positive rate), while the probability of false alarm refers to the proportion
of healthy samples that are incorrectly identified as faulty (i.e. false-positive
rate). Finally, the probability of correct classification considers a correct event
if the detected fault is associated to the actual sensor undergoing failure.
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Figure 4: A snapshot of the test set for false alarm rate of Pf = 10−2.
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Figure 5: Detection performance and averaged correct classifi-
cation performance of both architectures by using ROC curves.

predictors. Estimators in both architectures exploit other sen-
sors data to estimate corresponding sensor reading, while
predictors in the proposed architecture play a complementary
role by using previous data of the corresponding sensors
and exploit better the available temporal correlation. Numer-
ical results showed that the proposed architecture achieves
better performance in term of probability of detection and
probability of correct classification for fixed probability of
false alarm. Moreover, the proposed architecture yields in-
ferior accommodation error than the M-SFDIA architecture.
In future works, we plan to exploit the classifier decisions to
avoid fault propagation into the proposed SFDIA architecture.
Future directions of research will include: (a) design of DTs
which are robust to communication channel uncertainties, (b)
the usage of explainable artificial intelligence techniques to
interpret (and improve) the proposed SFDIA approach and
(c) the capitalization of multimodal techniques for improved
estimators’ design.
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